Abstract
Clinical studies have revealed that genetic variations in metabotropic glutamate receptor 3 (mGlu3) affect performance on cognitive tasks dependent upon the prefrontal cortex (PFC) and may be linked to psychiatric conditions such as schizophrenia, bipolar disorder, and addiction. We have performed a series of studies aimed at understanding how mGlu3 influences PFC function and cognitive behaviors. In the present study, we found that activation of mGlu3 can induce long-term depression in the mouse medial PFC (mPFC) in vitro. Furthermore, in vivo administration of a selective mGlu3 negative allosteric modulator impaired learning in the mPFC-dependent fear extinction task. The results of these studies implicate mGlu3 as a major regulator of PFC function and cognition. Additionally, potentiators of mGlu3 may be useful in alleviating prefrontal impairments associated with several CNS disorders.
Funding Source
Cited by
This article is cited by 51 publications-
Dogra, S., Putnam, J., & Conn, P. J. (2022). Metabotropic glutamate receptor 3 as a potential therapeutic target for psychiatric and neurological disorders. Pharmacology, biochemistry, and behavior, 221, 173493. https://doi.org/10.1016/j.pbb.2022.173493
-
Veselinović, T., & Neuner, I. (2022). Progress and Pitfalls in Developing Agents to Treat Neurocognitive Deficits Associated with Schizophrenia. CNS drugs, 10.1007/s40263-022-00935-z. Advance online publication. https://doi.org/10.1007/s40263-022-00935-z
-
Luessen, D. J., & Conn, P. J. (2022). Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacological reviews, 74(3), 630–661. https://doi.org/10.1124/pharmrev.121.000540
-
Vermudez, S., Buch, A., Weiss, K., Gogliotti, R. G., & Niswender, C. M. (2022). Exploration of group II metabotropic glutamate receptor modulation in mouse models of Rett syndrome and MECP2 Duplication syndrome. Neuropharmacology, 209, 109022. https://doi.org/10.1016/j.neuropharm.2022.109022
-
Dogra, S., & Conn, P. J. (2022). Metabotropic Glutamate Receptors As Emerging Targets for the Treatment of Schizophrenia. Molecular pharmacology, 101(5), 275–285. https://doi.org/10.1124/molpharm.121.000460
-
Hall, J., & Bray, N. J. (2022). Schizophrenia Genomics: Convergence on Synaptic Development, Adult Synaptic Plasticity, or Both?. Biological psychiatry, 91(8), 709–717. https://doi.org/10.1016/j.biopsych.2021.10.018
-
Tyler, R. E., Bluitt, M. N., Engers, J. L., Lindsley, C. W., & Besheer, J. (2022). The effects of predator odor (TMT) exposure and mGlu3 NAM pretreatment on behavioral and NMDA receptor adaptations in the brain. Neuropharmacology, 207, 108943. https://doi.org/10.1016/j.neuropharm.2022.108943
-
Dogra, S., & Conn, P. J. (2021). Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders. Neuropharmacology, 196, 108687. https://doi.org/10.1016/j.neuropharm.2021.108687
-
Dogra, S., Stansley, B. J., Xiang, Z., Qian, W., Gogliotti, R. G., Nicoletti, F., Lindsley, C. W., Niswender, C. M., Joffe, M. E., & Conn, P. J. (2021). Activating mGlu3 Metabotropic Glutamate Receptors Rescues Schizophrenia-like Cognitive Deficits Through Metaplastic Adaptations Within the Hippocampus. Biological psychiatry, 90(6), 385–398. https://doi.org/10.1016/j.biopsych.2021.02.970
-
Ruan, H., & Yao, W. D. (2021). Loss of mGluR1-LTD following cocaine exposure accumulates Ca2+-permeable AMPA receptors and facilitates synaptic potentiation in the prefrontal cortex. Journal of neurogenetics, 35(4), 358–369. https://doi.org/10.1080/01677063.2021.1931180
-
Banks, M. I., Zahid, Z., Jones, N. T., Sultan, Z. W., & Wenthur, C. J. (2021). Catalysts for change: the cellular neurobiology of psychedelics. Molecular biology of the cell, 32(12), 1135–1144. https://doi.org/10.1091/mbc.E20-05-0340
-
Xiang, Z., Lv, X., Lin, X., O’Brien, D. E., Altman, M. K., Lindsley, C. W., Javitch, J. A., Niswender, C. M., & Conn, P. J. (2021). Input-specific regulation of glutamatergic synaptic transmission in the medial prefrontal cortex by mGlu2/mGlu4 receptor heterodimers. Science signaling, 14(677), eabd2319. https://doi.org/10.1126/scisignal.abd2319
-
Joffe, M. E., Santiago, C. I., Oliver, K. H., Maksymetz, J., Harris, N. A., Engers, J. L., Lindsley, C. W., Winder, D. G., & Conn, P. J. (2020). mGlu2 and mGlu3 Negative Allosteric Modulators Divergently Enhance Thalamocortical Transmission and Exert Rapid Antidepressant-like Effects. Neuron, 105(1), 46–59.e3. https://doi.org/10.1016/j.neuron.2019.09.044
-
Moran, S. P., Xiang, Z., Doyle, C. A., Maksymetz, J., Lv, X., Faltin, S., Fisher, N. M., Niswender, C. M., Rook, J. M., Lindsley, C. W., & Conn, P. J. (2019). Biased M1 receptor-positive allosteric modulators reveal role of phospholipase D in M1-dependent rodent cortical plasticity. Science signaling, 12(610), eaax2057. https://doi.org/10.1126/scisignal.aax2057
-
Sun, W., Li, J., Cui, S., Luo, L., Huang, P., Tang, C., & An, L. (2019). Sleep Deprivation Disrupts Acquisition of Contextual Fear Extinction by Affecting Circadian Oscillation of Hippocampal-Infralimbic proBDNF. eNeuro, 6(5), ENEURO.0165-19.2019. https://doi.org/10.1523/ENEURO.0165-19.2019
-
Maksymetz, J., Joffe, M. E., Moran, S. P., Stansley, B. J., Li, B., Temple, K., Engers, D. W., Lawrence, J. J., Lindsley, C. W., & Conn, P. J. (2019). M1 Muscarinic Receptors Modulate Fear-Related Inputs to the Prefrontal Cortex: Implications for Novel Treatments of Posttraumatic Stress Disorder. Biological psychiatry, 85(12), 989–1000. https://doi.org/10.1016/j.biopsych.2019.02.020
-
Joffe, M. E., Santiago, C. I., Engers, J. L., Lindsley, C. W., & Conn, P. J. (2019). Metabotropic glutamate receptor subtype 3 gates acute stress-induced dysregulation of amygdalo-cortical function. Molecular psychiatry, 24(6), 916–927. https://doi.org/10.1038/s41380-017-0015-z
-
Stansley, B. J., & Conn, P. J. (2019). Neuropharmacological Insight from Allosteric Modulation of mGlu Receptors. Trends in pharmacological sciences, 40(4), 240–252. https://doi.org/10.1016/j.tips.2019.02.006
-
Neale, J. H., & Olszewski, R. (2019). A role for N-acetylaspartylglutamate (NAAG) and mGluR3 in cognition. Neurobiology of learning and memory, 158, 9–13. https://doi.org/10.1016/j.nlm.2019.01.006
-
Joffe, M. E., Santiago, C. I., Stansley, B. J., Maksymetz, J., Gogliotti, R. G., Engers, J. L., Nicoletti, F., Lindsley, C. W., & Conn, P. J. (2019). Mechanisms underlying prelimbic prefrontal cortex mGlu3/mGlu5-dependent plasticity and reversal learning deficits following acute stress. Neuropharmacology, 144, 19–28. https://doi.org/10.1016/j.neuropharm.2018.10.013
-
de la Fuente Revenga, M., Ibi, D., Cuddy, T., Toneatti, R., Kurita, M., Ijaz, M. K., Miles, M. F., Wolstenholme, J. T., & González-Maeso, J. (2019). Chronic clozapine treatment restrains via HDAC2 the performance of mGlu2 receptor agonism in a rodent model of antipsychotic activity. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 44(2), 443–454. https://doi.org/10.1038/s41386-018-0143-4
-
Mazzitelli, M., Palazzo, E., Maione, S., & Neugebauer, V. (2018). Group II Metabotropic Glutamate Receptors: Role in Pain Mechanisms and Pain Modulation. Frontiers in molecular neuroscience, 11, 383. https://doi.org/10.3389/fnmol.2018.00383
-
Joffe, M. E., Centanni, S. W., Jaramillo, A. A., Winder, D. G., & Conn, P. J. (2018). Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS chemical neuroscience, 9(9), 2188–2204. https://doi.org/10.1021/acschemneuro.8b00200
-
Hsu, T. M., Noble, E. E., Liu, C. M., Cortella, A. M., Konanur, V. R., Suarez, A. N., Reiner, D. J., Hahn, J. D., Hayes, M. R., & Kanoski, S. E. (2018). A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Molecular psychiatry, 23(7), 1555–1565. https://doi.org/10.1038/mp.2017.91
-
O’Brien, D. E., Shaw, D. M., Cho, H. P., Cross, A. J., Wesolowski, S. S., Felts, A. S., Bergare, J., Elmore, C. S., Lindsley, C. W., Niswender, C. M., & Conn, P. J. (2018). Differential Pharmacology and Binding of mGlu2 Receptor Allosteric Modulators. Molecular pharmacology, 93(5), 526–540. https://doi.org/10.1124/mol.117.110114
-
Ting, J. T., Lee, B. R., Chong, P., Soler-Llavina, G., Cobbs, C., Koch, C., Zeng, H., & Lein, E. (2018). Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. Journal of visualized experiments : JoVE, (132), 53825. https://doi.org/10.3791/53825
-
Ershov, N. I., Bondar, N. P., Lepeshko, A. A., Reshetnikov, V. V., Ryabushkina, J. A., & Merkulova, T. I. (2018). Consequences of early life stress on genomic landscape of H3K4me3 in prefrontal cortex of adult mice. BMC genomics, 19(Suppl 3), 93. https://doi.org/10.1186/s12864-018-4479-2
-
Stansley, B. J., & Conn, P. J. (2018). The therapeutic potential of metabotropic glutamate receptor modulation for schizophrenia. Current opinion in pharmacology, 38, 31–36. https://doi.org/10.1016/j.coph.2018.02.003
-
Di Menna, L., Joffe, M. E., Iacovelli, L., Orlando, R., Lindsley, C. W., Mairesse, J., Gressèns, P., Cannella, M., Caraci, F., Copani, A., Bruno, V., Battaglia, G., Conn, P. J., & Nicoletti, F. (2018). Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 128, 301–313. https://doi.org/10.1016/j.neuropharm.2017.10.026
-
Walker, A. G., Sheffler, D. J., Lewis, A. S., Dickerson, J. W., Foster, D. J., Senter, R. K., Moehle, M. S., Lv, X., Stansley, B. J., Xiang, Z., Rook, J. M., Emmitte, K. A., Lindsley, C. W., & Conn, P. J. (2017). Co-Activation of Metabotropic Glutamate Receptor 3 and Beta-Adrenergic Receptors Modulates Cyclic-AMP and Long-Term Potentiation, and Disrupts Memory Reconsolidation. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 42(13), 2553–2566. https://doi.org/10.1038/npp.2017.136
-
Engers, J. L., Bollinger, K. A., Weiner, R. L., Rodriguez, A. L., Long, M. F., Breiner, M. M., Chang, S., Bollinger, S. R., Bubser, M., Jones, C. K., Morrison, R. D., Bridges, T. M., Blobaum, A. L., Niswender, C. M., Conn, P. J., Emmitte, K. A., & Lindsley, C. W. (2017). Design and Synthesis of N-Aryl Phenoxyethoxy Pyridinones as Highly Selective and CNS Penetrant mGlu3 NAMs. ACS medicinal chemistry letters, 8(9), 925–930. https://doi.org/10.1021/acsmedchemlett.7b00249
-
Bollinger, K. A., Felts, A. S., Brassard, C. J., Engers, J. L., Rodriguez, A. L., Weiner, R. L., Cho, H. P., Chang, S., Bubser, M., Jones, C. K., Blobaum, A. L., Niswender, C. M., Conn, P. J., Emmitte, K. A., & Lindsley, C. W. (2017). Design and Synthesis of mGlu2 NAMs with Improved Potency and CNS Penetration Based on a Truncated Picolinamide Core. ACS medicinal chemistry letters, 8(9), 919–924. https://doi.org/10.1021/acsmedchemlett.7b00279
-
McColm, J., Brittain, C., Suriyapperuma, S., Swanson, S., Tauscher-Wisniewski, S., Foster, J., Soon, D., & Jackson, K. (2017). Evaluation of single and multiple doses of a novel mGlu2 agonist, a potential antipsychotic therapy, in healthy subjects. British journal of clinical pharmacology, 83(8), 1654–1667. https://doi.org/10.1111/bcp.13252
-
Foster, D. J., & Conn, P. J. (2017). Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron, 94(3), 431–446. https://doi.org/10.1016/j.neuron.2017.03.016
-
Johnson, K. A., Mateo, Y., & Lovinger, D. M. (2017). Metabotropic glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine release in the dorsal striatum. Neuropharmacology, 117, 114–123. https://doi.org/10.1016/j.neuropharm.2017.01.038
-
Le Hellard, S., Wang, Y., Witoelar, A., Zuber, V., Bettella, F., Hugdahl, K., Espeseth, T., Steen, V. M., Melle, I., Desikan, R., Schork, A. J., Thompson, W. K., Dale, A. M., Djurovic, S., Andreassen, O. A., & Schizophrenia Working Group of the Psychiatric Genomics Consortium (2017). Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment. Schizophrenia bulletin, 43(3), 654–664. https://doi.org/10.1093/schbul/sbw085
-
Maksymetz, J., Moran, S. P., & Conn, P. J. (2017). Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Molecular brain, 10(1), 15. https://doi.org/10.1186/s13041-017-0293-z
-
Liu, W., Ge, T., Leng, Y., Pan, Z., Fan, J., Yang, W., & Cui, R. (2017). The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural plasticity, 2017, 6871089. https://doi.org/10.1155/2017/6871089
-
Johnson, K. A., & Lovinger, D. M. (2016). Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction?. Frontiers in cellular neuroscience, 10, 264. https://doi.org/10.3389/fncel.2016.00264
-
Kang, S. J., & Kaang, B. K. (2016). Metabotropic glutamate receptor dependent long-term depression in the cortex. The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology, 20(6), 557–564. https://doi.org/10.4196/kjpp.2016.20.6.557
-
Samarasinghe, K. T., Munkanatta Godage, D. N., Zhou, Y., Ndombera, F. T., Weerapana, E., & Ahn, Y. H. (2016). A clickable glutathione approach for identification of protein glutathionylation in response to glucose metabolism. Molecular bioSystems, 12(8), 2471–2480. https://doi.org/10.1039/c6mb00175k
-
Lindsley, C. W., Emmitte, K. A., Hopkins, C. R., Bridges, T. M., Gregory, K. J., Niswender, C. M., & Conn, P. J. (2016). Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chemical reviews, 116(11), 6707–6741. https://doi.org/10.1021/acs.chemrev.5b00656
-
Muguruza, C., Meana, J. J., & Callado, L. F. (2016). Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Frontiers in pharmacology, 7, 130. https://doi.org/10.3389/fphar.2016.00130
-
O’Brien, D. E., & Conn, P. J. (2016). Neurobiological Insights from mGlu Receptor Allosteric Modulation. The international journal of neuropsychopharmacology, 19(5), pyv133. https://doi.org/10.1093/ijnp/pyv133
-
Senter, R. K., Ghoshal, A., Walker, A. G., Xiang, Z., Niswender, C. M., & Conn, P. J. (2016). The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Current neuropharmacology, 14(5), 455–473. https://doi.org/10.2174/1570159×13666150421003225
-
Balu D. T. (2016). The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Advances in pharmacology (San Diego, Calif.), 76, 351–382. https://doi.org/10.1016/bs.apha.2016.01.006
-
Ghoshal, A., Rook, J. M., Dickerson, J. W., Roop, G. N., Morrison, R. D., Jalan-Sakrikar, N., Lamsal, A., Noetzel, M. J., Poslusney, M. S., Wood, M. R., Melancon, B. J., Stauffer, S. R., Xiang, Z., Daniels, J. S., Niswender, C. M., Jones, C. K., Lindsley, C. W., & Conn, P. J. (2016). Potentiation of M1 Muscarinic Receptor Reverses Plasticity Deficits and Negative and Cognitive Symptoms in a Schizophrenia Mouse Model. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 41(2), 598–610. https://doi.org/10.1038/npp.2015.189
-
Felts, A. S., Rodriguez, A. L., Smith, K. A., Engers, J. L., Morrison, R. D., Byers, F. W., Blobaum, A. L., Locuson, C. W., Chang, S., Venable, D. F., Niswender, C. M., Daniels, J. S., Conn, P. J., Lindsley, C. W., & Emmitte, K. A. (2015). Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as Selective Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 2. Journal of medicinal chemistry, 58(22), 9027–9040. https://doi.org/10.1021/acs.jmedchem.5b01371
-
Engers, J. L., Rodriguez, A. L., Konkol, L. C., Morrison, R. D., Thompson, A. D., Byers, F. W., Blobaum, A. L., Chang, S., Venable, D. F., Loch, M. T., Niswender, C. M., Daniels, J. S., Jones, C. K., Conn, P. J., Lindsley, C. W., & Emmitte, K. A. (2015). Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents. Journal of medicinal chemistry, 58(18), 7485–7500. https://doi.org/10.1021/acs.jmedchem.5b01005
-
Kiritoshi, T., & Neugebauer, V. (2015). Group II mGluRs modulate baseline and arthritis pain-related synaptic transmission in the rat medial prefrontal cortex. Neuropharmacology, 95, 388–394. https://doi.org/10.1016/j.neuropharm.2015.04.003
-
Ellaithy, A., Younkin, J., González-Maeso, J., & Logothetis, D. E. (2015). Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends in neurosciences, 38(8), 506–516. https://doi.org/10.1016/j.tins.2015.06.002