Publications

Recent Publications from the Tang Lab: 2018 – present

Chemists and Biologists work collaboratively on most current projects in the Tang group.

  1. “Rh(II) and Chiral Phosphoric Acid Co-catalyzed Selective O–H Insertions for Stereodivergent O-Alkylation of Glycosides” Wu, J.;‡ Jia, P.;‡ Tang, H.; Cai, D. and Tang, W.* J. Am. Chem. Soc. 2025, 147, 5871–5878. Link. (‡Equal Contribution)
  2. “Development of Prostate Cancer-Targeting BRD4 Intramolecular Bivalent Molecular Glue Degraders” Cai, D.;‡ Li, C.;‡ Bio Idrissou, M.; Hawkins, N. J.; Mudududdla, R.; Chen, X.; Nguyen, T. T.; Li, X.; Hernandez, R.; Tang, W.* ChemRxiv 2024. Link. (‡Equal Contribution)
  3. “Development of Potent and Selective RIPK1 Degraders with In Vivo Efficacy for Cancer Treatment” Zhang, Z.;‡ Li, C.;‡ Hawkins, N. J.;‡ Mudududdla, R.; Nie, Y.; Liu, P.-K.; Huang, P.; Del Rio, N. M.; Chang, H.; Brown, M. E.; Li, L.; Tang, W.* ChemRxiv 2024. Link. (‡Equal Contribution)
  4. “Development of Folate Receptor Targeting Chimeras for Cancer Selective Degradation of Extracellular Proteins” Zhou, Y.; Li, C.; Chen, X.; Zhao, Y.; Liao, Y.; Huang, P.; Wu, W.; Nieto, N. S.; Li, L.; and Tang, W.* Nat. Commun. 2024, 15, 8695. Link. Link to PDF file.
  5. “AI is a viable alternative to high throughput screening: a 318-target study” The Atomwise AIMS Program (>100 authors) Sci. Rep. 2024, 14, 7526. Link.
  6. “Development of Integrin Targeting Chimeras (ITACs) for the Lysosomal Degradation of Extracellular Proteins” Zhou, Y.; Liao, Y.; Zhao, Y.; Tang, W.* ChemMedChem 2024, 19, e202300643. Link.
    Schematic illustration of degraders that recruit various lysosome-targeting receptors (LTRs)
  7. “BCR::ABL1 Proteolysis-targeting chimeras (PROTACs): The new frontier in the treatment of Ph+ leukemias?” Cruz-Rodriguez, N.; Tang, H.; Benjamin Bateman, B.; Tang, W.; Deininger, M.* Leukemia 2024, 38, 1885–1893. Link.
  8. “Non-Markovian Dynamic Models Identify Non-Canonical KRAS-VHL Encounter Complex Conformations for Novel PROTAC Design” Qiu, Y.; Wiewiora, R. P.; Izaguirre, J. A.; Xu, H.; Sherman, W.; Tang, W.*; Huang, X.* JACS Au 2024, 4, 3857-3868. Link.
  9. “Development of Phenyl-substituted Isoindolinone- and Benzimidazole-Type Cereblon Ligands for Targeted Protein Degradation” Nie, X.;‡ Zhao, Y.;‡ Tang, H.;‡ Zhang, Z.; Liao, J.; Almodóvar-Rivera, C. M.; Sundaresan, R.; Xie, H.; Guo, L.; Wang, B.; Guan, H.; Xing, Y.; and Tang, W.* ChemBioChem 2024, 25, e202300685. Link. (‡Equal Contribution)
  10. “Stereo- and Site-selective Acylation in Carbohydrate Synthesis” Blaszczyk, S. A.; Li, X.; Wen, P.; and Tang, W.* Synlett 2024, 35, 1745-1762. (an account for our work in the past 10 years or so) Link.
  11. Targeted Degradation of Extracellular Secreted and Membrane Proteins” Chen, X.; Zhou, Y. ; Zhao, Y.; and Tang, W.* Trends. Pharmacol. Sci. 2023, 44, 762-775. Link.
  12. “Development of Potent and Selective Coactivator-Associated Arginine Methyltransferase 1 (CARM1) Degraders” Xie, H.;‡ Bacbac, M. S.;‡ Ma, M.; Kim, E.-J.; Wang, Y.; Wu, W.; Li, L.; Xu, W.* and Tang, W.* J. Med. Chem. 2023, 66, 13028–13042. Link. (‡Equal Contribution).Abstract image for Tang publication on "Development of Potent and Selective Coactivator-Associated Arginine Methyltransferase 1(CARM1) Degraders. Key points: (1) Quickly identified E3 libase and linker length by Rapid-TAC platform; (2) Rigid linkers yielded potent PROTACs 3b and 3e; (3) 3b is at least 100-fold more potent than TP-604 for downstream effects; (4) 3b is more potent than TP-064 for inhibiting breast cancer cell mibration
  13. “Dynamic Kinetic Stereoselective Glycosylation via Rh(II) and Chiral Phosphoric Acid-Cocatalyzed Carbenoid Insertion to Anomeric OH Bond for the Synthesis of Glycoconjugates” Wu, J.;‡ Jia, P.;‡ Kuniyil, R.;‡ Liu, P.* and Tang, W.* Angew. Chem. In. Ed. 2023, 62, e202307144. Link. (‡Equal Contribution) Highlighted as “hot paper”An efficient approach for the stereoselective synthesis of α-linked glycoconjugates was reported via a RhII/chiral phosphoric acid (CPA)-cocatalyzed dynamic kinetic anomeric O-alkylation of sugar-derived lactols via carbenoid insertion, achieving excellent anomeric/diastereo-selectivity, broad substrate scope, and high efficiency.
  14. “A Modular Chemistry Platform for the Development of a Cereblon E3 Ligase-based Partial PROTAC Library” Almodóvar-Rivera, C. M.; Zhang, Z.; Li, J.; Xie, H.; Zhao, Y.; Guo, L.; Mannhardt, M. G. and Tang, W.* ChemBioChem 2023, 24, e202300482. Link.
  15. “A platform for the rapid synthesis of molecular glues (Rapid-Glue) under miniaturized conditions for direct biological screening” Li, J.;‡ Li, C.;‡ Zhang, Z.;‡ Zhang, Z.;‡ Wu, Z.; Liao, J.; Wang, Z.; McReynolds, M.; Xie, H.; Guo, L.; Fan, Q.; Peng, J. and Tang, W.* Eur. J. Med. Chem. 2023, 258, 115567. Link. (‡Equal Contribution) Abstract image showing that when 380 commercially available aldehydes are combined with 4 building blocks in DMSO, 1520 compounds are generated under miniaturized conditions.
  16. “Development of Oligomeric Mannose-6-phosphonate Conjugates for Targeted Protein Degradation” Stevens, C. M.‡; Zhou, Y.‡; Teng, P.‡; Rault, L. N.; Liao, Y.; Tang, W.* ACS Med. Chem. Lett. 2023, 14, 719-726. Link. (‡Equal Contribution)Graphical abstract: the development of a series of structurally well-defined mannose-6-phosphonate (M6Pn)-peptide conjugates that are capable of linking to a variety of targeting ligands for proteins of interest and successfully internalizing and degrading those proteins through M6PR.
  17. “Development of Substituted Phenyl Dihydrouracil as the Novel Achiral Cereblon Ligands for Targeted Protein Degradation” Xie, H.‡; Li, C.‡; Tang, H.; Tandon, I.; Liao, J.; Roberts, B. L.; Zhao, Y.; Tang, W.* J. Med. Chem. 2023, 66, 2904-2917. Link. (‡Equal Contribution)Abstract image of findings: substituted achiral phenyl dihydrouracil (PDHU) can be used as a novel class of CRBN ligands for the development of PROTACs. Although the parent PDHU has a minimal binding affinity to CRBN, we found that some substituted PDHUs had a comparable binding affinity to lenalidomide. Structural modeling provided a further understanding of the molecular interactions between PDHU ligands and CRBN. PDHUs also have greater stability than lenalidomide. Finally, potent BRD4 degraders were developed by employing trisubstituted PDHUs.
  18. “LPA81: Discovery of an Exceptionally Potent Protac Degrading Native and Mutant BCR-ABL1 Oncoprotein in CML” Milad Rouhimoghadam, M.; Tang, H.; Liao, J.; Bates, B.; Uribe-Cano, D.; Zhao, H.; Tang, W.; Deininger, M. W. Blood 2022, 140 (Supplement 1), 485–486. Link.
  19. “Diptoindonesin G is a middle domain HSP90 modulator for cancer treatment” Donahue, K.‡; Xie, H.‡; Li, M.; Gao, A.; Ma, M.; Wang, Y.; Tipton, R.; Semanik, N.; Primeau, T.; Li, S.; Li, L.; Tang, W.*; Xu, W.* J. Biol. Chem. 2022, 298 , 102700. Link. (‡Equal Contribution) (Editor’s pick)
  20. “Development of Selective FGFR1 Degraders using a Rapid Synthesis of Proteolysis Targeting Chimera (Rapid-TAC) Platform” Guo, L.‡; Liu, J.‡; Nie, X.‡; Wang, T.; Ma, Z.- X., Yin, D. Tang, W.* Bioorg. Med. Chem. Lett. 2022, 75, 128982. Link. (‡Equal Contribution)Abstract image for Tang Lab study "Development of selective FGFR1 degraders using a Rapid synthesis of proteolysis targeting Chimera (Rapid-TAC) platform"
  21. “Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation” Chen, Y.; Tandon, I.; Heelan, W.; Wang, Y.; Tang, W.* and Hu, Q.* Chem. Soc. Rev. 2022, 51, 5330-5350. Link. Graphical abstract: Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation
  22. “A Platform for the Rapid Synthesis of Proteolysis Targeting Chimeras (Rapid-TAC) under Miniaturized Conditions” Guo, L.‡; Zhou, Y.‡; Nie, X.‡; Zhang, Z.; Zhang, Z.; Li, C.; Wang, T.; and Tang, W.* Eur. J. Med. Chem. 2022, 236, 114317. Link. (‡Equal Contribution)Graphical abstract for Tang Lab study "A platform for the rapid synthesis of proteolysis targeting chimeras (Rapid-TAC) under miniaturized conditions"
  23. “A General Strategy for the Synthesis of Rare Sugars via Ru(II)-catalyzed and Boron-mediated Selective Epimerization of 1,2-trans-diols to 1,2-cis-diols” Li, X.; Wu, J.; and Tang, W.* J. Am. Chem. Soc. 2022, 144, 3727-3736. Link. Highlighted in Organic Chemistry Highlight Link.
  24. “Streamlined Iterative Assembly of Thio-oligosaccharides by Aqueous S-Glycosylation of Diverse Deoxythio Sugars” Wen, P.‡; Jia, P.‡; Fan, Q.; McCarty, B. J. and Tang, W.* ChemSusChem 2022, 15, e202102483. Link. (‡Equal Contribution)
  25. “In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses” Liao, J.; Nie, X.; Unarta, I. C.; Ericksen, S. S.*; and Tang, W.* J. Med. Chem. 2022, 65, 6116-6132. Link.
    Illustrated info model that compares poses and whether they are maintained in crystal ref
  26. “Energy Decomposition Analysis Reveals the Nature of Lone Pair−π Interactions with Cationic π Systems in Catalytic Acyl Transfer Reactions” Hao, H.; Qi, X.; Tang, W.* and Liu, P.* Org. Lett. 2021, 23, 4411–4414Link.
    Graphical abstract for "Energy Decomposition Analysis Reveals the Nature of Lone Pair−π Interactions with Cationic π Systems in Catalytic Acyl Transfer Reactions"
  27. “Development of Triantennary N-Acetylgalactosamine Conjugates as Degraders for Extracellular Proteins” Zhou, Y.; Teng, P.; Montgomery, N. T.; Li, X.; and Tang, W.* ACS Cent. Sci, 2021, 7, 499-506Link.
    Graphical abstract: The attachment of trimeric GalNAc to small molecules or antibodies yields bifunctional molecules that can selectively direct extracellular proteins into the lysosome of liver cells for degradation.
  28. “Evaluation of the binding affinity of E3 ubiquitin ligase ligands by cellular target engagement and in-cell ELISA assay” Yang, K.;  Zhou, Y.; Roberts, R. L.; Nie, X.; Tang, W.* Star Protocols 20212, 100288. Link.
  29. “A neuroanatomical mechanism linking perinatal TCDD exposure to lower urinary tract dysfunction in adulthood” Turco, A. E.; Oakes, S. R.; Stietz, K. P. K. Dunham, C. L.; Joseph, D. B.; Chathurvedula, T. S.; Girardi, N. M.; Schneider, A. J.; Gawdzik, J.; Sheftel, C. M.; Wang, P.; Wang, Z.; Bjorling, D. E.; Ricke, W. A.; Tang, W.; Hernandez, L. L.; Keast, J. R.; Bonev, A. D.; Grimes, M. D.; Strand, D. W.; Tykocki, N. R.; Tanguay, R. L.; Peterson, R. E.; Vezina, C. M. Dis. Models Mech. 2021, 14, dmm049068. Link.
  30. “Development of MDM2 Degraders Based on Ligands Derived from Ugi Reactions:
    Lessons and Discoveries” Wang, B.‡; Liu, J.‡; Tandon, I.; Wu, S.; Teng, P.; Liao, J.; and Tang, W.* Eur. J. Med. Chem. 2021, 219, 113425. Link. (‡Equal Contribution)
    Chemical structure and graph involving MDM2 degraders
  31. “A dancing nickel in asymmetric catalysis: Enantioselective synthesis of boronic esters by 1,1-addition to terminal alkenes” McCarty, B. J. and Tang, W.* Green Syn. Cat. 2021, 2, 1-3. Link.
  32. “Transition Metal-Catalyzed Selective Carbon−Carbon Bond Cleavage of Vinylcyclopropanes in Cycloaddition Reactions” Wang, J.; Blaszczyk, S. A.; Li, X.;* and Tang, W.* Chem. Rev. 2021121, 110-139. Link.
  33. “A marine microbiome antifungal targets urgent-threat drug-resistant fungi” Zhang, F.; Zhao, M.; Braun, D. R.; Ericksen, S. S.; Piotrowski, J. S.; Nelson, J.; Peng, J.; Ananiev, G. E. Chanana, S.; Barns, K.; Fossen, J.; Sanchez, H.; Chevrette, M. G.; Guzei, I. A.; Zhao, C.; Guo, L.; Tang, W.; Currie, C. R.; Rajski, S. R.; Audhya, A.; Andes, D. R.; Bugni, T. S. Science2020370 (issue 6519), 974-978. Link.
  34. “From Methylene Bridged Diindole to Carbonyl Linked Benzimidazoleindole: Development of Potent and Metabolically Stable PCSK9 Modulators” Xie, H.;‡ Yang, K.;‡ Winston-McPherson, G. N.; Stapleton, D. S.; Keller, M. P.; Attie, A. D.; Smith, K. A.; and Tang, W.* Eur. J. Med. Chem. 2020, 206, 112678-112692. Link. (‡Equal Contribution)
    Graphical abstract for Tang research article "From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators"
  35. “Mild Cu(OTf)2-mediated C-glycosylation with Chelation-Assisted Picolinate as a Leaving Group” Ye, W.;‡ Stevens, C. M.;‡ Wen, P.;‡ Simmons, C. J.; and Tang, W.* J. Org. Chem. 202085, 16218–16225. Link. (‡Equal Contribution) (Special Issue on A New Era of Discovery in Carbohydrate Chemistry)
  36. “A Cell-based Target Engagement Assay for the Identification of Cereblon E3 Ubiquitin Ligase Ligands and Their Application in HDAC6 Degraders” Yang, K.;‡  Zhao, Y.;‡ Nie, X.; Wu, H.; Wang, B.; Almodovar-Rivera, C. M.; Xie, H.;* Tang, W.* Cell Chem. Biol. 202027, 866-876. Link. (‡Equal ContributionGraphical abstract for Tang research article "A Cell-Based Target Engagement Assay for the Identification of Cereblon E3 Ubiquitin Ligase Ligands and Their Application in HDAC6 Degraders"
  37. “Two-stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders” Roberts, B. L.;‡ Ma, Z.-X.;‡ Gao, A.; Leisten, E. D.; Yin, D.; Xu, W.; and Tang, W.* ACS Chem. Biol. 202015, 1487–1496. Link. (‡Equal Contribution)
    Graphical abstract showing Tang lab study stages. Stage 1: Simultaneously examine multiple parameters of a library of unstable PROTACs by in-cell ELISA, and Stage 2: Form stable PROTACs by bioisoteric replacement.
  38. “Chemical Synthesis and Biological Application of Modified Oligonucleotides” Glazier, D. A.;‡ Liao, J.;‡ Roberts, B. L.;‡ Li, X.; Yang, K.; Stevens, C. M.; and Tang, W.* Bioconjugate Chem. 2020311213-1233Link. (‡Equal Contribution)
    Graphical abstract for Tang article "Chemical Synthesis and Biological Application of Modified Oligonucleotides"
  39. “Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase” Yang, K.;‡ Wu, H.;‡ Zhang, Z.; Leisten, E. D.; Nie, X.; Liu, B.; Wen, Z.; Zhang, J.; Cunningham, M. D. and Tang, W.* ACS MedChem. Lett. 202011, 575-581. Link. (‡Equal Contribution)
    Graphical abstract for Tang article "Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase"
  40. “Synthesis of Glycosyl Chlorides and Bromides by Chelation Assisted Activation of Picolinic Esters under Mild Neutral Conditions” Wen, P.;‡ Simmons, C. J.;‡ Ma, Z.-X.; Blaszczyk, S. A.; Balzer, P. G.; Ye, W.; Duan, X.; Wang, H.-Y.; Yin, D.; Stevens, C. M.; and Tang, W.* Org. Lett. 202022, 1495-1498. Link. (‡Equal Contribution)
  41. “Synthesis and Biological Evaluation of FICZ Analogues as Agonists of Aryl Hydrocarbon Receptor” Wu, H.;‡ Liu, B.;‡ Yang, K.;‡ Winston-McPherson, G. N.; Leisten, E. D.; Vezina, C. M.; Ricke, W. A.; Peterson, R. E.; and Tang, W.* Bioorg. Med. Chem. Lett. 202030, 126959. Link. (‡Equal Contribution)
  42. “Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks” Blaszczyk, S. A.; Glazier, D. A.; and Tang, W.* Acc. Chem. Res. 202053, 231-243. Link.
    Graphical abstract image for Tang article "Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks"
  43. “Mechanism of Activation for the Sirtuin 6 Protein Deacylase” Klein, M. A., Liu, C.; Kuznetsov, V. I.; Feltenberger, J. B.; Tang, W.; Denu, J. M.* J. Biol. Chem. 2020295, 1385-1399Link.
  44. “In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure exacerbates urinary dysfunction in hormone-treated C57BL/6J mice through a non-malignant mechanism involving proteomic changes in the prostate that differ from those elicited by testosterone and estradiol” Turco, A. E.; Thomas, S;  Crawford, L. K.; Tang, W.; Peterson, R. E.; Li, L.; Ricke, W. A.; Vezina, C. M.* Am. J. Clin. Exp. Urol. 2020859Link.
  45. “Tissue-specific quantification and localization of androgen and estrogen receptors in prostate cancer” Sehgal, P. D.; Bauman, T. M.; Nicholson, T. M.; Vellky, J. E.; Ricke, E. A.; Tang, W.; Xu, W.; Huang, W.; Ricke, W. A.* Hum. Pathol. 20198999-108Link.
  46. “Site- and Stereoselective O-Alkylation of Glycosides by Rh(II)-Catalyzed Carbenoid Insertion” Wu, J.;‡ Li, X.;‡ Qi, X.; Duan, X.; Cracraft, W. L.; Guizei, I. A.; Liu, P.;* and Tang, W.* J. Am. Chem. Soc. 2019141, 19902-19910Link. (‡Equal Contribution)
    Graphical abstract image for Tang article "Site-Selective and Stereoselective O-Alkylation of Glycosides by Rh(II)-Catalyzed Carbenoid Insertion"
  47. “A general strategy for diversifying complex natural products to polycyclic scaffolds with medium-sized rings” Zhao, C.; Ye, Z.; Ma, Z.-X.; Wildman, S. A.; Blaszczyk, S. A.; Hu, L.; Guizei, I. A.; Tang, W.* Nat. Commun. 201910, 4015. Link.Graphical abstract: Two Phases of Diversification. Starting from a polycyclic scaffold, we are able to oxidize then functionalize various natural products to produce modified scaffolds
  48. “Discovery of 2,3′-diindolylmethanes as a novel class of PCSK9 modulators” Winston-McPherson, G. N.; Xie, H.; Yang, K.; Li, X.; Shu, D.; Tang, W.* Bioorg. Med. Chem. Lett. 201929, 2345-2348. Link. (Equal Contribution)
  49. “Development of Multi-Functional Histone Deacetylase 6 Degraders with Potent Anti-Myeloma Activity” Wu, H.;  Yang, K.;  Zhang, Z.; Leisten, E. D.; Li, Z.; Xie, H.; Liu, J.; Smith, K. A.; Novakova, Z.; Barinka, C.; and Tang, W.* J. Med. Chem. 201962, 7042-7057. Link. (‡Equal Contribution)
    Graphical abstract image for Tang article "Development of Multi-Functional Histone Deacetylase 6 Degraders with Potent Anti-Myeloma Activity"
  50. “Site‐ and Stereoselective Phosphoramidation of Carbohydrates Using a Chiral Catalyst and a Chiral Electrophile” Glazier, D. A.; Schroeder, J. M.; Blaszczyk, S. A.; Tang, W.* Adv. Syn. Cat. 2019, 361, 3729-3732. Link.
    Graphical abstract image for Tang article "Site- and Stereoselective Phosphoramidation of Carbohydrates Using a Chiral Catalyst and a Chiral Electrophile"
  51. “Development of selective small molecule MDM2 degraders based on nutlin” Wang, B.;# Wu, S.;# Liu, J.; Yang, K.; Xie, H.; and Tang, W.* Eur. J. Med. Chem. 2019176, 476-491. Link.(#Equal Contribution)
    3-D and chemical diagram showing structure of Degrader 32 within the Ternary Complex
  52. “S‐Adamantyl Group Directed Site‐Selective Acylation and Its Applications in the Streamlined Assembly of Oligosaccharides” Blaszczyk. S. A.;#  Xiao, G.;# Wen, P.;# Hao, H.; Wu, J.; Wang, B.; Carattino, F.; Li, Z.; Glazier, D. A.; McCarty, B. J.; Liu, P.* and Tang, W.* Angew. Chem. Int. Ed. 201958, 9542-9546. Link. (#Equal Contribution)Graphical abstract: The sterically encumbered adamantyl group (Adm) directs site-selective acylation at the C2 position of S-glycosides through dispersion interactions between the adamantyl C−H bonds and the π system of the cationic acylated catalyst. Because of their stability, chemical orthogonality, and ease of activation for glycosylation, the site-selective acylation of S-glycosides can streamline oligosaccharide synthesis.
  53. “Finding the Sweet Spot in SAX-ERLIC Mobile Phase for Simultaneous Enrichment of N-glyco and Phospho- peptides” Cui, Y.; Yang, K.; Tabang D. N.; Huang, J.; Tang, W., Li, L.* J. Am. Soc. Mass Spectrom2019, 30, 2491–2501. Link.
    Graphical abstract for Tang article "Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides"
  54. “Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models” Zhou, T.; Wang, Q.; Phan, N.; Ren, J.; Yang, H.; Feldman, C. C.; Feltenberger, J. B.; Ye, Z.; Wildman, S. A.; Tang, W., Liu, B.* Cell Death & Disease 2019, 10, 226. Link.
    Graphical abstract from Tang article "Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models"
  55. “Intermolecular Regio- and Stereoselective Hetero-[5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines” Zhao, C.; Glazier, D. A.; Yang, D.; Yin, D.; Guzei, I. A.; Aristov, M. M.; Liu, P.* and Tang, W.* Angew. Chem. Int. Ed.  201958, 887-891. Link.
    Graphical abstract from Tang study "Intermolecular Regio- and Stereoselective Hetero-[5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines"
  56. “Recent advances in site-selective functionalization of carbohydrates mediated by organocatalysts” Blaszczyk, S. A.; Homan, T. C.; Tang, W.* Carbohydr. Res. 2019471, 64-77. Link.
  57. “Organocatalyst-Mediated Dynamic Kinetic Enantioselective Acylation of 2-Chromanols” Glazier, D. A.; Schroeder, J. M.; Liu, J.; Tang, W.* Adv. Syn. Cat. 2018, 360, 4646-4649. Link.
  58. “Development of the first small molecule histone deacetylase 6 (HDAC6) degraders.” Yang, K.; Song, Y.; Xie, H.; Wu, H.; Wu, Y.-T.; Leisten, E. D.;  Tang W.* Bioorg. Med. Chem. Lett. 201828, 2493-2497. Link.
    Graphical abstract for Tang publication "Development of the first small molecule histone deacetylase 6 (HDAC6) degraders"
  59. “Catalytic Asymmetric Synthesis of All Possible Stereoisomers of 2,3,4,6‐Tetradeoxy‐4‐Aminohexopyranosides” Zhu Z.; Glazier, D. A.; Yang D.; Tang, W.* Adv. Syn. Cat. 2018, 360, 2211-2215. Link.
  60. “Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR)” Seok, S.-H.; Ma, Z.-X.; Feltenberger, J. B.; Chen, H.; Chen, H.; Scarlett, C.; Lin, Z.; Satyshur, K. A.; Cortopassi, M.; Jefcoate, C. R.; Ge, Y.; Tang, W.; Bradfield, C. A.; and Xing, Y.* J. Biol. Chem. 2018293, 1994-2005. Link.
  61. “Iridium-Catalyzed Dynamic Kinetic Stereoselective Allylic Etherification of Achmatowicz Rearrangement Products.” Zhu, Z.‡; Wang, H.-Y.‡; Simmons, C. J.; Tseng, P.-S.; Qiu, X.; Zhang, Y.; Duan, X.; Yang, J.-K.; and Tang W.* Adv. Syn. Cat. 2018360595-599. (‡Equal Contribution) Link.
    Graphical abstract image for Tang research article "ridium-Catalyzed Dynamic Kinetic Stereoselective Allylic Etherification of Achmatowicz Rearrangement Products"
  62. “Chiral Reagents in Glycosylation and Modification of Carbohydrates.” Wang, H.-Y.; Blaszczyk, S. A.; Xiao, G.; and Tang W.* Chem. Soc. Rev. 201847681-701. Link.
  63. Publications: 2013-2017

    1. “AB3-loaded and tumor-targeted unimolecular micelles for medullary thyroid cancer treatment.” Jaskula-Sztul, R.; Chen, G.; Dammalapati, A.; Harrison, A.; Tang, W.; Gong, S.;* and Chen, H.* J. Mater. Chem. 20175151-159. Link.
    2. “Addressing the Challenge of Carbohydrate Site Selectivity by Synergistic Catalysis.”
      Blaszczyk, S. A. and Tang W.* Chem 20173, 722–723. Link.
      Graphical abstract image for "Addressing the Challenge of Carbohydrate Site Selectivity by Synergistic Catalysis"
    3. “Isoquinoline-1-carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild Neutral Conditions.” Wang, H.-Y.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; and Tang W.* Angew. Chem. Int. Ed. 201756, 15698–15702 . LinkSoP News.
      Graphical abstract image for "Isoquinoline-1-carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild Neutral Conditions"
    4. “Harnessing the Reactivity of Iridium Hydrides by Air: Iridium- Catalyzed Oxidation of Aldehydes to Acids in Water.” Yang, Z.; Luo, R.; Zhu, Z.; Yang, X.; and Tang W.* Organometallics201736, 4095–4098. Link.
    5. “Transition metal mediated carbonylative benzannulations.” Song, W.; Blaszczyk, S. A.; Liu, J.; Wang, S.;* and Tang W.* Org. Biomol. Chem. 201715, 7490-7504. Link. 
      Graphical abstract image for "Transition metal mediated carbonylative benzannulations."
    6. “Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source.” Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.-L.; Yang, J.-K.; and Tang W.* Green Chem. 201719, 3296-3301. Link.
      Graphical abstract image for "Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source"
    7. De novo Synthesis of Mono- and Oligosaccharides via Dihydropyran Intermediates.”
      Song, W.; Wang, S.* and Tang, W.* Chem. Asian J. 201712, 1027-1042. Link.
      Graphical abstract image for "e novo Synthesis of Mono- and Oligosaccharides via Dihydropyran Intermediates"
    8. “Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation–n Interaction.”
      Xiao, G.; Cintron-Rosado, G. A.; Glazier, D. A.; Xi, B.-m.; Liu, C.; Liu, P.* and Tang, W.* J. Am. Chem. Soc. 2017139, 4346-4349. Link. SoP News.
      Graphical abstract image for "Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation–n Interaction"
    9. “Neuroendocrine Tumor-Targeted Upconversion Nanoparticle-Based Micelles for Simultaneous NIR-Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging.”  Chen, G.; Jaskula-Sztul, R.; Esquibel, C. R.; Lou, I.; Zheng, Q.; Dammalapati, A.; Harrison, A.; Eliceiri, K. W.; Tang, W.; Chen, H.;* Gong, S.* Adv. Funct. Mater. 201727, 1604671. Link.
    10. “Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Anomeric Hydroxyl Groups and a Controlled Reduction of the Glycosyl Ester Products.”
      Wang, H.-Y.; Simmons, C. J.; Zhang, Y.; Smits, A. M.; Balzer, P. G.; Wang, S.;* and Tang, W.* Org. Lett. 201719, 508-511. Link.
    11. “Synthesis of Highly Substituted Benzofuran-containing Natural Products via Rh-catalyzed Carbonylative Benzannulation.” Liu, J.-t.; Simmons, C. J.; Xie, H.; Yang, F.; Zhao, X-l.;* Tang, Y.;* and Tang, W.* Adv. Syn. Catal. 2017359, 693-697link. Highlight in Synfacts, 2017, 13(05): 0478 (DOI: 10.1055/s-0036-1590363).
      Graphical abstract image for "Synthesis of Highly Substituted Benzofuran-containing Natural Products via Rh-catalyzed Carbonylative Benzannulation"
    12. “Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma.”  Hideshima, T.; Qi, J.; Paranal, R. M.; Tang, W.; Greenberg, E.; West, N.; Colling, M. E.; Estiu, G.; Mazitschek, R.; Perry, J. A.; Ohguchi, H.; Cottini, F.; Mimura, N.; Görgün, G.; Tai, Y.-T.; Richardson, P. G.; Carrasco, R. D.; Wiest, O.; Schreiber, S. L.; Anderson, K. C.;* Bradner, J. E.* Proc. Natl. Acad. Sci. U.S.A. 2016113, 13162-13167. Link.
    13. “Author Profile ” Tang, W. Angew. Chem. Int. Ed. 201655, 12142. Link.
    14. “Total Synthesis of Diptoindonesin G and Its Analogues as Selective Modulators of Estrogen Receptors.” Liu, J.-t.; Do, T. J.; Simmons, C. J.; Lynch, J. C.; Gu, W.; Ma, Z.-X.; Xu, W.; and Tang, W.* Org. Biomol. Chem. 201614, 8927-8930. Link.Thumbnail for publication 63: Graphical abstract: Total synthesis of diptoindonesin G and its analogues as selective modulators of estrogen receptors
    15. “Rhodium(I)-Catalyzed Benzannulation of Heteroaryl Propargylic Esters: Synthesis of Indoles and Related Heterocycles.”  Li, X.; Xie, H.; Fu, X.; Liu, J.-t.; Wang, H.-y.; Xi, B.-m.;* Liu, P.;* Xu, X.;* and Tang, W.* Chem. Eur. J. 201622, 10410-10414. Link.
      Graphical abstract image for "Rhodium(I)-Catalyzed Benzannulation of Heteroaryl Propargylic Esters: Synthesis of Indoles and Related Heterocycles"
    16. “Rhodium-catalyzed [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkene or Allene.”
      Song, W.; Lynch, J. C.; Shu, X.-z.; and Tang, W.* Adv. Syn. Catal. 2016358, 2007-2011. Link.
      Graphical abstract image for "Rhodium-catalyzed [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkene or Allene"
    17. “Rhodium-Catalyzed [5+2] Cycloaddition of Inverted 3-Acyloxy-1,4-enyne and Alkyne: Experimental and Theoretical Studies.”  Li, X.; Song, W.; Zhao, X.-l.; Ke, X.; Xu, X.;* Liu, P.; Houk, K. N. and Tang, W.* Chem. Eur. J. 2016, 22, 7079-7083. Link.
      Graphical abstract image for Tang study "Rhodium-Catalyzed [5+2] Cycloaddition of Inverted 3-Acyloxy-1,4-enyne and Alkyne: Experimental and Theoretical Studies"
    18. “Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations.”  Song, W.; Li, X.; Yang, K.; Zhao, X.-l.; Glazier, D. A.; Xi, B.-m.;* Tang, W.* J. Org. Chem. 2016, 81, 2930–2942. Link.
      Graphical abstract for Tang article "Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations"
    19. “Mechanism and reactivity of rhodium-catalyzed intermolecular [5+1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study.”  Ke, X.-N.; Schienebeck, C. M.; Zhou, C.-C.; Xu, X.-F.;* Tang, W.* Chin. Chem. Lett. 2015, 26, 730-734. Link.
    20. “Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Lactols for De Novo Synthesis of Carbohydrate.”  Wang, H.-Y.; Yang, K.; Yin, D.; Liu, C.; Glazier, D. A.; Tang, W.* Org. Lett. 2015, 17, 5272-5275. Link.
      Graphical abstract image for Tang article "Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Lactols for De Novo Synthesis of Carbohydrate"
    21. “Divergent De Novo Synthesis of All Eight Stereoisomers of 2,3,6-Trideoxyhexopyranosides and Their Oligomers.”  Song, W.; Zhao, Y.;* Lynch, J. C.; Kim, H.; Tang, W.* Chem Commun. 2015, 51, 17475-17478. Link.
      Graphical abstract image for Tang article "Divergent de novo synthesis of all eight stereoisomers of 2,3,6-trideoxyhexopyranosides and their oligomers"
    22. “Rhodium-Catalyzed Stereoselective Intramolecular [5 + 2] Cycloaddition of 3-Acyloxy 1,4-Enyne and Alkene.”
      Shu, X.-Z.; Schienebeck, C. M.; Li, X.; Zhou, X.; Song, W.; Chen, L.; Guzei, I. A.; Tang, W.* Org. Lett. 2015, 17, 5128-5131. Link.
    23. “Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations.”
      Li, X.; Li, H.; Song, W.; Tseng, P.-S.; Liu, L.-Y.*; Guzei, I. A.; Tang, W.* Angew. Chem. Int. Ed. 2015, 54, 12905-12908. Link.
      Graphical abstract image for Tang article "Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations"
    24. “Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products.”  Wang, H.-Y.; Yang, K.; Bennett S. R.; Guo, S.-R.;* Tang, W.* Angew. Chem. Int. Ed. 2015, 54, 8756–8759. Link.
      Graphical abstract image for Tang article "Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products"
    25. “Novel Analogs Targeting Histone Deacetylase Suppress Aggressive Thyroid Cancer Cell Growth and Induce Re-differentiation.”  Jang, S.; Yu, X. M.; Odorico, S.; Clark, M.; Jaskula-Sztul, R.; Schienebeck, C. M.; Kupcho, K. R.; Harrison, A. D.; Winston-McPherson, G. N.; Tang, W.; Chen, H.* Cancer Gene Ther. 2015, 22, 410. Link.
    26. “Synthesis of Substituted Tropones by Sequential Rh-Catalyzed [5+2] Cycloaddition and Elimination.”  Song, W.; Xi, B.-m.;* Yang, K.; Tang, W.* Tetrahedron 2015, 71, 5979-5984. (Invited contribution for Prof. Barry Trost’s Tetrahedron Award.). Link.
      Graphical abstract image for Tang article "Synthesis of Substituted Tropones by Sequential Rh-Catalyzed [5+2] Cycloaddition and Elimination"
    27. “Rhodium-Catalyzed Intermolecular [5+1] and [5+2] Cycloadditions Using 1,4-Enynes with an Electron-Donating Ester on the 3-Position.”  Schienebeck, C. M.; Song, W.; Smits, A. M.; Tang, W.* Synthesis 2015, 47, 1076-1084. (invited feature article). Link.
    28. “Tumor Suppressor Role of Notch3 in Medullary Thyroid Carcinoma Revealed by Genetic and Pharmacological Induction.”  Jaskula-Sztul, R.; Eide, J.; Tesfazghi, S.; Dammalapati, A.; Harrison, A. D.; Yu, X.-M.; Scheinebeck, C.; Winston-McPherson, G.; Kupcho, K. R.; Robers, M. B.; Hundal, A. K.; Tang, W.;* Chen, H.* Mol. Cancer Therap. 2015, 14, 499. Link.
    29. “Gold versus Rhodium: Divergent Reactivity Enabled by the Catalyst.” Winston-McPherson, G. N.; Tang, W.* ChemCatChem 2015, 7, 574-576. Link.
      Graphical abstract image for Tang paper "Gold versus Rhodium: Divergent Reactivity Enabled by the Catalyst"
    30. “Copper-catalyzed tandem annulation/arylation for the synthesis of diindolylmethanes from propargylic alcohols.”  Li, H.; Li, X.; Wang, H.-Y.; Winston-McPherson, G. N.; Geng, H.-M. J.; Guzei, I. A.; Tang, W.* Chem. Commun. 2014, 50, 12293-12296. Link.
      Graphical abstract for Tang article "Copper-catalyzed tandem annulation/arylation for the synthesis of diindolylmethanes from propargylic alcohols"
    31. “Synthesis of naturally occurring tropones and tropolones.”  Liu, N.; Song, W.; Schienebeck, C. M.; Zhang, M.* Tang, W.* Tetrahedron. 2014, 70, 9281-9305. (Invited review) Link.
      Graphical abstract image of Tropone and Trpolones (for Tang article "Synthesis of naturally occurring tropones and tropolones)
    32. “Synthesis and Biological Evaluation of 2,3’-Diindolylmethanes as Agonists of Aryl Hydrocarbon Receptor.”  Winston-McPherson, G. N.; Shu, D.; Tang, W.* Bioorg. Med. Chem. Lett. 2014, 24, 4023-4025. Link.
      Graphical abstract for Tang pub "Synthesis and Biological Evaluation of 2,3’-Diindolylmethanes as Agonists of Aryl Hydrocarbon Receptor"
    33. “Cinchona Alkaloids as Organocatalysts in Enantioselective Halofunctionalization of Alkenes and Alkynes.”  Zheng, S.; Schienebeck, C. M.; Zhang, W.; Wang, H.-Y.; Tang, W.* Asian J. Org. Chem. 2014, 3, 366-376. (Invited review) Link.
      Graphical abstract for Tang article "Cinchona Alkaloids as Organocatalysts in Enantioselective Halofunctionalization of Alkenes and Alkynes"
    34. “Intermolecular bromoesterification of conjugated enynes: an efficient synthesis of bromoallenes.”  Wang, H.-Y.; Zhang, W.; Schienebeck, C. M.; Bennett, S. R.; Tang, W.* Org. Chem. Front. 2014, 1, 386-390. (Invited contribution) Link.
      Graphical abstract for Tang pub "Intermolecular bromoesterification of conjugated enynes: an efficient synthesis of bromoallenes"
    35. “3-Acyloxy-1,4-enyne: a New Five-Carbon Synthon for Rhodium-Catalyzed [5 + 2] Cycloadditions.”  Schienebeck, C. M.; Li, X.; Shu, X.-Z.; Tang, W.* Pure Appl. Chem. 2014, 86, 409-417. (Invited review) Link.
    36. “Tethered Spectroscopic Probes Estimate Dynamic Distances with Subnanometer Resolution in Voltage-Dependent Potassium Channels.”  Jarecki, B. W.; Zheng, S.; Zhang, L.; Li, X.; Zhou, X.; Cui, Q.; Tang, W.; Chanda, B.* Biophysical J. 2013, 105, 2724-2732. Link.  Highlight in Nature Chemical Biology Link.
    37. “Rhodium-Catalyzed Tandem Annulation and (5+1) Cycloaddition: 3-Hydroxy-1,4-enyne as the 5-Carbon Component.”  Li, X.; Song, W.; Tang, W.* J. Am. Chem. Soc. 2013, 135, 16797-16800. Link.
      Graphical abstract for Tang pub "Rhodium-Catalyzed Tandem Annulation and (5+1) Cycloaddition: 3-Hydroxy-1,4-enyne as the 5-Carbon Component"
    38. “Transfer of Chirality in the Rhodium-Catalyzed Intramolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-Enynes (ACEs) and Alkynes: Synthesis of Enantioenriched Bicyclo[5.3.0]decatrienes.”  Shu, X.-Z.; Schienebeck, C. M.; Song, W.; Guzei, I. A.; Tang, W.* Angew. Chem. Int. Ed. 2013, 52, 13601-13605. Link.
      Highlight in Synfacts, 2014, volume 10, issue 3, 0295 (doi:10.1055/s-0033-1340687)
      Graphical abstract for Tang article "Transfer of Chirality in the Rhodium-Catalyzed Intramolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-Enynes (ACEs) and Alkynes: Synthesis of Enantioenriched Bicyclo[5.3.0]decatrienes"
    39. “Stereoselective Halocyclization of Alkenes with N-Acyl Hemiaminal Nucleophiles.”
      Liu, N.; Wang, H.-Y.; Zhang, W.; Jia, Z.-H.; Guzei, I. A.; Xu, H.-D.;* Tang, W.* Chirality 2013, 25, 805-809. Link.  (Invited contribution.)
    40. “Stereoselective Total Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-Based [5+2] Cycloaddition.”  Zhang, M.; Liu, N.; Tang, W.* J. Am. Chem. Soc. 2013, 135, 12434-12438. Link.
      Graphical abstract image for Tang pub "Stereoselective Total Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-Based [5+2] Cycloaddition"
    41. “Platinum-Catalyzed Tandem Indole Annulation/Arylation for the Synthesis of Diindolylmethanes and Indolo[3,2-b]carbazoles.”  Shu, D.; Winston-McPherson, G. N.; Song, W.; Tang, W.* Org. Lett. 2013, 15, 4162-4165. Link.
      Graphical abstract image for Tang pub "Platinum-Catalyzed Tandem Indole Annulation/Arylation for the Synthesis of Diindolylmethanes and Indolo[3,2-b]carbazoles"
    42. “Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity.”  Xu, X.;* Liu, P.; Shu, X.-Z.; Tang, W.*; Houk, K. N.* J. Am. Chem. Soc. 2013, 135, 9271-9274. Link.
      Graphical abstract for Tang publication "Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity"
    43. “Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes.”  Liu, R.; Winston-McPherson, G. N.; Yang, Z.-Y.; Zhou, X.; Song, W.; Guzei, I. A.; Xu, X.;* Tang, W.* J. Am. Chem. Soc. 2013, 135, 8201–8204. Link.
      Graphical abstract for Tang pub "Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes"
    44. “Stereoselective Addition of Halogen to Conjugated Enynes and Its Application in the Total Synthesis of (-)-Kumausallene.”  Werness, J. B.; Zhang, W.; Tang, W.* in Strategies and Tactics in Organic Synthesis Ed., Harmata, M., Elsevier Science, Pergamon Press: Oxford, UK 2013, Vol. 9, Chapter 10, pp 275-291.
    45. “Enantioselective intermolecular bromoesterification of allylic sulfonamides.”
      Zhang, W.; Liu, N.; Schienebeck, C. M.; Zhou, X.; Izhar, I. I.; Guzei, I. A.; Tang, W.* Chem. Sci. 2013, 4, 2652-2656. Link.
      Graphical abstract for Tang pub "Ring Expansion of Alkynyl Cyclopropanes to Highly Substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate"
    46. “Ring Expansion of Alkynyl Cyclopropanes to Highly Substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate.”  Liu, R.; Zhang, M.; Winston-McPherson, G.; Tang, W.* Chem. Commun. 2013, 49, 4376-4378. Link.
      (This article is part of the ChemComm ‘Emerging Investigators 2013’ themed issue.)
      Graphical abstract for Tang article "Ring Expansion of Alkynyl Cyclopropanes to Highly Substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate"
    47. “Effect of Ester on Rhodium-Catalyzed Intermolecular [5 + 2] Cycloaddition of 3-Acyloxy-1,4-enynes and Alkynes.”  Schienebeck, C. M.; Robichaux, P. J.; Li, X.; Chen, L.; Tang, W.* Chem. Commun. 2013, 49, 2616-2618. Link.
      Graphical abstract image for Tang article "Rhodium- and Platinum-catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[b]indoles"
    48. “Rhodium- and Platinum-catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[b]indoles.”  Shu, D.; Song, W.; Li, X.; Tang, W.* Angew. Chem. Int. Ed. 2013, 52, 3237-3240. Link.
      Graphical abstract image: Cross-dimerization of terminal arylacetylenes and terminal propargylic alcohols/amides has been achieved in the presence of a rhodium catalyst. This method features high chemo- and regioselectivities rendering convenient and atom economical access to functionalized enynes.
    49. “Rhodium-Catalyzed Chemo- and Regioselective Cross-Dimerization of Two Terminal Alkynes.”  Xu, H.-D.*; Zhang, R.-W.; Li, X., Huang, S., Tang, W.; Hu, W.-H. Org. Lett. 2013, 15, 840-843. Link.
      Graphical abstract image for Tang pub "Rhodium-Catalyzed Chemo- and Regioselective Cross-Dimerization of Two Terminal Alkynes"

      Publications 2007-2012

      1. “Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent “gold rush.”  Shu, X.-Z.; Shu, D.; Schienebeck, C. M.; Tang, W.* Chem. Soc. Rev. 2012, 41, 7698-7711. Link.
        Graphical abstract for Tang pub "Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent “gold rush"
      2. “Rhodium-Catalyzed Carbonylation of Cyclopropyl Substituted Propargyl Esters: A Tandem 1,3-Acyloxy Migration [5 + 1] Cycloaddition.”  Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Guzei, I. A.; Tang, W.* J. Org. Chem. 2012, 77, 6463-6472. Link.
        Graphical abstract for Tang pub "Rhodium-Catalyzed Carbonylation of Cyclopropyl Substituted Propargyl Esters: A Tandem 1,3-Acyloxy Migration [5 + 1] Cycloaddition"
      3. .”Synthesis of Functionalized Cyclohexenone Core of Welwitindolinones via Rhodium-Catalyzed [5 + 1] Cycloaddition.”  Zhang, M.; Tang, W.* Org. Lett. 2012, 14, 3756-3759. Link.
        Graphical abstract image for Tang pub "Synthesis of Functionalized Cyclohexenone Core of Welwitindolinones via Rhodium-Catalyzed [5 + 1] Cycloaddition"
      4. “Stereoselective Preparation of Cyclobutanes with Four Different Substituents: Total Synthesis and Structural Revision of Pipercyclobutanamide A and Piperchabamide G.”
        Liu, R.; Zhang, M.; Wyche, T. P.; Winston-McPherson, G. N.; Bugni, T. S.; Tang, W.* Angew. Chem. Int. Ed. 2012, 51, 7503-7506. Link.  Highlight in Nature Chemical Biology Link.
        Graphical abstract image for Tang pub "Stereoselective Preparation of Cyclobutanes with Four Different Substituents: Total Synthesis and Structural Revision of Pipercyclobutanamide A and Piperchabamide G"
      5. “Catalytic Enantioselective Halolactonization of Enynes and Alkenes.”  Zhang, W.; Liu, N.; Schienebeck, C. M.; Decloux, K.; Zheng, S. Werness, J. B.; Tang, W.* Chem.-Euro. J. 2012, 18, 7296-7305. Link.
        Highlight in Synfacts, 2012, issue 7, 0790 (doi:10.1055/s-0031-1289837).
        Graphical abstract for Tang pub "Catalytic Enantioselective Halolactonization of Enynes and Alkenes"
      6. “Rhodium-catalyzed Intra- and Intermolecular [5+2] Cycloaddi-tion of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration.”  Shu, X.-z; Li, X.; Shu, D.; Huang, S.; Schienebeck, C. M.; Zhou, X.; Robichaux, P. J.; Tang, W.* J. Am. Chem. Soc. 2012, 134, 5211-5221. Link.
        Graphical abstract image for Tang pub "Rhodium-catalyzed Intra- and Intermolecular [5+2] Cycloaddi-tion of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration"
      7. “Rhodium-Catalyzed Carbonylation of 3-Acyloxy-1,4-enynes for the Synthesis of Cyclopentenones.”  Li, X.; Huang, S.; Schienebeck, C. M.; Shu, D.; Tang, W.* Org. Lett. 201214, 1584-1587. Link.
        Graphical abstract image for Tang pub "Rhodium-Catalyzed Carbonylation of 3-Acyloxy-1,4-enynes for the Synthesis of Cyclopentenones"
      8. “Rhodium-catalyzed 1,3-Acyloxy Migration and Subsequent Intramolecular [4+2] Cycloaddition of Vinylallene and Unactivated Alkyne.”  Huang, S.; Li, X.; Lin, C. L.; Guzei, I. A.; Tang, W.* Chem. Commun. 201248, 2204-2206. Link.
        Graphical abstract image from Tang pub "Rhodium-catalyzed 1,3-Acyloxy Migration and Subsequent Intramolecular [4+2] Cycloaddition of Vinylallene and Unactivated Alkyne"
      9. “Discovery of histone deacetylase 8 selective inhibitors.”  Tang, W.*; Luo, T.; Greenberg, E. F.; Bradner, J. E.; Schreiber, S. L.* Bioorg. Med. Chem. Lett. 201121, 2601-2605. Link.
      10. “Effect of Halogenation Reagents on Halocyclization and Overman Rearrangement of Allylic Trichloroacetimidates.”  Liu, N.; Schienebeck, C. M.; Collier, M. D.; Tang, W.* Tetrahedron Lett. 201152 , 6217-6219. Link.
        Graphical abstract for Tang pub "Effect of Halogenation Reagents on Halocyclization and Overman Rearrangement of Allylic Trichloroacetimidates"
      11. “Rhodium-catalyzed Ring Expansion of Cyclopropanes to Seven-membered Rings by 1,5-C-C Bond Migration.”  Li, X.; Zhang, M.; Shu, D.; Robichaux, P. J.; Huang, S.; Tang, W.* Angew. Chem. Int. Ed. 201150, 10421-10424. Link
        Graphical abstract image for Tang pub "Rhodium-catalyzed Ring Expansion of Cyclopropanes to Seven-membered Rings by 1,5-C-C Bond Migration"
      12. “Interception of a Rautenstrauch Intermediate by Alkynes for [5+2] Cycloaddition: Rhodium-Catalyzed Cycloisomerization of 3-Acyloxy-4-ene-1,9-diynes to Bicyclo[5.3.0]decatrienes.”  Shu, X.-z.; Huang, S.; Shu, D.; Guzei, I. A.; Tang, W.* Angew. Chem. Int. Ed. 201150, 8153-8156. Link.
        Highlighted as “hot paper”
        Graphical abstract for Tang pub "Interception of a Rautenstrauch Intermediate by Alkynes for [5+2] Cycloaddition: Rhodium-Catalyzed Cycloisomerization of 3-Acyloxy-4-ene-1,9-diynes to Bicyclo[5.3.0]decatriene"
      13. “Stereoselective Total Synthesis of (-)-Kumausallene.”  Werness, J. B.; Tang, W.* Org. Lett. 201113, 3664-3666. Link.
        Highlight in Synfacts, 2011, issue 10, 1042 (doi:10.1055/s-0030-1261141).
        Graphical abstract image for Tang pub "Stereoselective Total Synthesis of (-)-Kumausallene"
      14. “Intramolecular 1,4-Addition of Nitrogen Nucleophile and Bromine Electrophile to Conjugated 1,3-Enyne.”  Liu, N.; Werness, J. B.; Guzei, I. A. Tang, W.* Tetrahedron 201167, 4385-4390. Link
        (Invited contribution for F. Dean Toste’s’ Tetrahedron Young Investigator Award.)
        Graphical abstract image for Tang pub "Intramolecular 1,4-Addition of Nitrogen Nucleophile and Bromine Electrophile to Conjugated 1,3-Enyne"
      15. “Synthesis of Highly Functionalized Cyclohexenone Rings: Rhodium-Catalyzed 1,3-Acyloxy Migration and Subsequent [5+1] Cycloaddition.”  Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Tang, W.* Angew. Chem. Int. Ed. 201150, 1346-1349. Link.|
        Graphical abstract image for Tang pub "Synthesis of Highly Functionalized Cyclohexenone Rings: Rhodium-Catalyzed 1,3-Acyloxy Migration and Subsequent [5+1] Cycloaddition"
      16. “Synthesis of bromoallenyl pyrrolidines via 1,4-addition to 1,3-enynes.”  Werness, J. B.; Tang, W.* Sci. China Chem. 201154, 56-60. Link.
        (Invited contribution for the 6th Sino-US Chemistry Professor Conference at HangzhouChina.)
        Graphical abstract for Tang pub "Synthesis of bromoallenyl pyrrolidines via 1,4-addition to 1,3-enynes"
      17. “Enantioselective Bromolactonization of Conjugated (Z)-Enynes.”  Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W.* J. Am. Chem. Soc. 2010132, 3664-3665. Link.
        Highlight in Angew. Chem. Int. Ed. Link.
        Graphical abstract for Tang pub "Enantioselective Bromolactonization of Conjugated (Z)-Enynes"
      18. “Thermodynamic Control of the Electrocyclic Ring Opening of Cyclobutenes: C=X Substituents at C-3 Mask the Kinetic Torquoselectivity.” Um, J. M.; Xu, H.-D.; Houk, K. N.*; Tang, W.* J. Am. Chem. Soc. 2009131, 6664-6665. Link.
        Graphical abstract image for Tang pub "Thermodynamic Control of the Electrocyclic Ring Opening of Cyclobutenes: C=X Substituents at C-3 Mask the Kinetic Torquoselectivity"
      19. “DABCO-Catalyzed 1,4-Bromolactonization of Conjugated Enynes: Highly Stereoselective Formation of a StereogenicCenter and an Axially Chiral Allene.”  Zhang, W.; Xu, H.-D.; Xu, H.; Tang, W.* J. Am. Chem. Soc. 2009131, 3832-3833. Link.
        Highlight in Synfacts, 2009, issue 6, 0604 (doi:10.1055/s-0029-1216700).
        Graphical abstract image for Tang pub "DABCO-Catalyzed 1,4-Bromolactonization of Conjugated Enynes: Highly Stereoselective Formation of a StereogenicCenter and an Axially Chiral Allene"
      20. “Intramolecular Hydroamination of Conjugated Enynes.”  Zhang, W.; Werness, J. B.; Tang, W.* Tetrahedron 200965, 3090-3095. Link.
        (Invited contribution for Justin DuBois’ Tetrahedron Young Investigator Award.)
        Graphical abstract for Tang article "Intramolecular Hydroamination of Conjugated Enyes"
      21. “N,N’-(11S,12S)-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)bis[2-(diphenylphosphino)-Benzamide.”  Tang, W. The Encyclopedia of Reagents for Organic Synthesis [EROS], (Ed. P. L. Fuchs, John Wiley and Sons) 2008.
      22. “Synthesis of Cyclobutenes by Highly Selective Transition-Metal-Catalyzed Ring Expansion of Cyclopropanes.”  Xu, H.-D.; Zhang, W.; Shu, D.; Werness, J. B.; Tang, W.* Angew. Chem. Int. Ed. 200847, 8933-8936. Link .
        Highlight in Synfacts, 2009, issue 1, 0063 (doi:10.1055/s-0028-1087400).
        Graphical abstract image for Tang pub "Synthesis of Cyclobutenes by Highly Selective Transition-Metal-Catalyzed Ring Expansion of Cyclopropanes"
      23. “Base-Catalyzed Intramolecular Hydroamination of Conjugated Enynes.”  Zhang, W.; Werness, J. B.; Tang, W.* Org. Lett. 200810, 2023-2026. Link
        Abstract image from Tang pub "Base-Catalyzed Intramolecular Hydroamination of Conjugated Enynes"